skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hossei, Hamideh"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Integrating PV panels into building facades (BIPV) necessitates a comprehensive understanding of the PV system’s impact on building energy consumption within the site’s climate zone. Maximizing PV power output depends on factors such as location, climate type, and latitude. However, minimizing total electricity consumption, which includes cooling, heating, and lighting loads, is significantly influenced by the design of the PV system and the climate region. This study conducted a thorough evaluation of the impact of south-facing PV-integrated louvers on both PV power generation and building energy performance, as well as occupants’ visual comfort, across 17 ASHRAE climate regions in the U.S. The results indicated that south-facing PV-integrated louvers significantly reduced building energy consumption in climate zones 1 to 3, as well as 4B and 5B. Wider louvers with longer spacing (S-3 typology) were particularly effective in zones with moderate cooling needs (climate zone 4). However, in colder climates (6–8) with significant heating demands, roof-mounted systems provided a better balance between power generation and solar heat gain for the building. The PV-louver designs effectively reduced sunlight penetration and maintained illuminance levels within the desired range across most of the floor area. Conversely, roof typologies exhibited lower lighting loads but resulted in significantly high mean illuminance levels on the working surface, leading to disturbing glare for occupants across a large portion of the floor area. The findings of this research offer practical implications for architects, engineers, and policymakers seeking sustainable building solutions. 
    more » « less